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Optimizing the physical data storage and retrieval of data are two key database management problems. In this
paper, we propose a language that can express both a relational query and the layout of its data. Our language can
express awide rangeofphysical database layouts, goingwell beyond the row-andcolumn-basedmethods that are
widely used in databasemanagement systems.Weuse deductive programsynthesis to turn ahigh-level relational
representation of a database query into a highly optimized low-level implementation which operates on a spe-
cialized layout of the dataset.We build an optimizing compiler for this language and conduct experiments using a
popular database benchmark, which shows that the performance of our specialized queries is better than a state-
of-the-art inmemorycompileddatabase systemwhile achievinganorder-of-magnitude reduction inmemoryuse.
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1 INTRODUCTION
Traditional database systems are generic and powerful, but they are not well optimized for static
databases. A static database is one where the data changes slowly or not at all and the queries are
�xed. These two constraints introduce opportunities for aggressive optimization and specialization.
This paper introducesC�����: a domain speci�c language and compiler for building static databases.
C����� achieves highperformance by combining query compilation techniques from state-of-the-art
in-memory databases [Neumann 2011] with a new deductive synthesis approach for generating
specialized data structures.
To better understand the scenarios that C����� supports, consider these two use cases. First,

consider a companywhichmaintains aweb dashboard for displaying internal analytics fromdata that
is aggregated nightly. The queries used to construct the dashboard cannot be precomputed directly,
because they depend on parameters like dates or customer IDs, but all the queries are generated from
a few query templates. Additionally, not all of the data in the original database is needed, and some
attributes are only used in aggregates. As another example, consider a company which is shipping
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Fig. 1. An overview of theC����� system (le�) vs a traditional RDBMS (right).

a GPS device that contains an embedded map. The map data is infrequently updated, and the device
queries it in only a few speci�c ways. The GPS manufacturer cares more about compactness and
e�ciency than about generality. As with the company building the dashboard, it is desirable to
produce a system that is optimal for the particular dataset to be stored.
These two companies could use a traditional database system, but using a system designed to

support arbitrary queries will miss important optimization opportunities. Alternatively, they could
implement their queries using custom data structures. This will give them tight control over their
data layout and query implementation but will be di�cult to develop and expensive to maintain.
C����� is an attempt to capture some of the optimization opportunities of static databases and

to address the needs of these two scenarios. As Figure 1 illustrates, the input to C����� is a dataset
and a parameterized query that a client will want to invoke on the data. The user then uses C�����’s
automatic optimizer or manually applies its high-level query transformations to generate an e�cient
implementation of an in-memory datastore specialized for the dataset and the parameterized query.
The transformations available in C����� give the programmer tight control over the organization
of the data in memory, allowing the user to trade o�memory usage against query performance with-
out the risk of introducing bugs. C����� uses code generation techniques from high-performance
in-memory databases to produce the low-level implementations required for e�cient execution.
The result is a package of data and code that uses signi�cantly less memory than the most e�cient
in-memory databases and for many queries can surpass the performance of in-memory databases
that already rely on aggressive code generation and optimization [Neumann 2011].

1.1 Contributions
Our primary contribution is the layout algebra: a new notation to jointly represent the layout of data
in memory and the queries that will be computed on it. This joint representation allows us to write
transformations that manipulate both the layout and the query in a single rewrite rule. This makes
it easy to apply aggressive layout transformations.

We describe a set of deductive optimization rules for the layout algebra that generalize traditional
query optimization rules to jointly optimize the query and the data layout and an automatic optimizer
that applies these rules.We also implement a specializing layout compiler that produces both a binary
representation of the data from the high-level data representation and machine code for accessing it.
Integrated Layout & Query Language. We de�ne the layout algebra, which extends the relational

algebra [Codd 1970] with layout operators that describe the particular data items to be stored and the
layout of that data in memory. The layout algebra is �exible and can express many layouts, including
row stores and clustered indexes. It supports nesting layouts, which gives control over data locality
and supports prejoining of data. Our use of a language which combines query and layout operators
makes it possible to write deductive transformations that change both the runtime query behavior
and the data layout.

Automated Deductive Optimizer. C����� provides a set of equivalence preserving transformations
which can change both the query and the data layout. The user can use C�����’s optimizer to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 170. Publication date: November 2020.



Deductive Optimization of Relational Data Storage 170:3

automatically select a sequence of transformations to deductively optimize their query. Alternatively,
they can apply transformations manually to optimize without worrying about introducing bugs.
C�����’s notation turns transformations thatwould be complex and global in other database systems
into local syntactic changes.

Type-driven Layout Compiler. Existing relational synthesis tools use standard library data struc-
tures and make extensive use of pointer based data structures that hurt locality [Hawkins et al. 2011;
Loncaric et al. 2018, 2016].C����� uses a specializing layout compiler that takes the properties of the
data into account when serializing it. Before generating the layout, C����� generates an abstraction
called a layout shape which guides the layout specialization. For example, if the layout is a row-store
with �xed-size tuples, the layout compiler will not emit a length �eld for the tuples. Instead, this
length will be compiled directly into the query. This specialization process creates very compact
datasets and avoids expensive branches in generated code.

High Performance Query Compiler. C����� uses code generation techniques from the high perfor-
mance in-memory database literature [Neumann 2011; Rompf and Amin 2015; Shaikhha et al. 2016;
Tahboub et al. 2018]. It eschews the traditional iterator based query executionmodel [Graefe 1994] in
favor of a code generation technique that produces simple, easily optimized low-level code. C�����
directly generates LLVM IR and augments the generated IR with information about the layout that
allows LLVM to further optimize it.

Empirical Evaluation. We empirically evaluate C����� on a benchmark derived from TPC-H, a
standard database benchmark [Council 2008]. We show that C����� is competitive with the state of
the art in-memory compiled database systemH���� [Neumann 2011] while using signi�cantly less
memory.We also show thatC����� scales to larger queries than the leading data-structure synthesis
tool C��� [Loncaric et al. 2018].

1.2 Limitations
C����� constructs read-only databases. This design decision limits the appropriate use cases for
C����� but it enables important optimizations. C����� takes advantage of the absence of updates
to tightly pack data together, which improves locality. C����� also aggressively specializes the
compiled query by including information about the layout, such as lengths of arrays and o�sets of
layout structures. Providing this information to the compiler improves the generated code.

The optimizer processes one query at a time.C����� supportsmultiple-queryworkloads by reducing
them to single-query workloads. However, the optimizer does not contain transformations that
exploit possible sharing of layouts between di�erent parts of a query, so the optimizer may replicate
more data than necessary. However, C����� removes any data which is not needed by the query and
it produces compact layouts for the data that remains, which reduces the overhead of any replication.

2 MOTIVATING EXAMPLE
We now describe the operation of C����� on an application from the software engineering liter-
ature. D���M���� is a tool which helps users understand complex APIs using software demon-
strations [Yessenov et al. 2017].D���M����maintains a database of program traces—computed
o�ine—which it queries to discover how to use anAPI.D���M���� is a good �t forC����� because:
(1) computing new traces is an infrequent task so the data in question is largely static and (2) the
data is automatically queried by the tool, so there is no need to support ad-hoc queries. Finally, query
performance is important forD���M���� to work interactively.
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2.1 Background
D���M���� stores program traces as ordered collections of events (e.g., function calls). Traces
have an inherent tree structure: each event has an enter and an exit and nested events may occur
between the enter and exit. Figure 2 shows the table and tree structure of theD���M���� data.

1 5 Foo

5 7 Foo

2 3 Bar

3 5 Baz

6 7 Baz

Enter Exit Call

4 5 Bar

(a) In tabular
form.

1 5 Foo

5 7 Foo

6 7 Baz

4 5 Bar

2 3 Bar

3 5 Baz

(b) In tree
form.

Fig. 2. Graphical representation
of theD���M���� data.

A critical query in theD���M���� system �nds nested calls to
particular functions in a trace of program events:
select ? .4=C4A , 2 .4=C4A from ;>6 as ?, ;>6 as 2 where

? .4=C4A <2 .4=C4A^2 .4=C4A <? .4G8C^? .83 =$?83^2 .83 =$283
We refer to the caller as the parent function and the callee as the
child function. Let ? and 2 be the traces of events inside the parent
and child function bodies respectively. The join predicate ? .4=C4A <
2 .4=C4A ^ 2 .4=C4A < ? .4G8C selects calls to the child function from
inside the parent function. The predicate ? .83 = $?83 ^2 .83 = $283
selects the pair of functions that we are interested in, where $?83
and $283 are parameters.

2.2 The Layout Algebra
C����� programs are written in a language called the layout algebra. The layout algebra is similar
to the relational algebra, but as we will see shortly, it can represent the layout of data as well as the
operation of queries. By design, it is more procedural than SQL, which is more akin to the relational
calculus [Codd1971]. For example, SQL leaves choices like join ordering to the queryplanner,whereas
in the layout algebra join ordering is explicit.
In designing the layout algebra, we follow a well-worn path in deductive synthesis of creating

a uniform representation that can capture all the re�nement steps from a high-level program to a
low-level one. Accordingly, the layout algebra can express programs which contain a mixture of
high-level relational constructs and low-level layout constructs. At some point, a layout algebra
program contains enough implementation information that the compiler can process it. We say that
these programs arewell-staged (Section 3.4).
Here is the nested call query from Section 2.1 translated into the layout algebra:

select({4=C4A? , 4=C4A2 }, join(4=C4A? <4=C4A2^4=C4A2 <4G8C? ,
filter($?83 =83? , select({83 7!83? , 4=C4A 7!4=C4A? , 4G8C 7!4G8C? }, ;>6)),
filter($283 =832 , select({83 7!832 , 4=C4A 7!4=C4A2 }, ;>6))))

There are three layout algebra operators in this query. filter(?, A ) �lters the relation A by the
predicate ? . join(?, A , A 0) takes the cross product of relations A and A 0 and �lters the result by ? .
select takes a list of expressions with optional names and a query, and selects the value of each
expression for each tuple in the query, possibly renaming it.
The scoping rules for the layout algebra may look somewhat unusual, but they are intended to

mimic the scoping conventions of SQL. In this query, the names 4=C4A , 4G8C and 83 are �eld names in
the ;>6 relation. The select operators introduce new names for these �elds, using the 7! operator,
so that ;>6 can be joined with itself. We formalize the semantics of the layout algebra, including the
scoping rules, in Section 3.2.
Note that at this point no layout is speci�ed for ;>6, so this program is not well-staged, and so

cannot be compiled. However, it still has well de�ned semantics. In Sections 2.4 to 2.6, we describe
how layouts can be incrementally introduced by transforming the program until it is well-staged.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 170. Publication date: November 2020.



Deductive Optimization of Relational Data Storage 170:5

2.3 Optimization Trade-O�s
Thenested call query is interesting because the data in question is fairly large—hundreds of thousands
of rows—and keeping it fully in memory, or even better in cache, is a signi�cant performance win.
Therefore, minimizing the size of the data in memory should improve performance.

However, there is a fundamental trade-o� between a more compact data representation and
allowing for e�cient access. Sometimes the two goals are aligned, but often they are not. For example,
creating a hash index allows e�cient access using a key, but introduces overhead in the form of a
mapping between hash keys and values.
In the rest of this section we examine three layouts at di�erent points in this trade-o� space: a

compact nested layout with no index structures (Figure 3a), a layout based on a single hash index
(Figure 3b), and a layout based on a hash index and an ordered index (Figure 3c). A priori, none
of these layouts is clearly superior. The hash based layout is the largest, but has the best lookup
properties. The nested layout precomputes the join and uses nesting to reduce the result size, but is
more expensive for lookups. The last layout must compute the join at runtime but it has indexes that
will make that computation fast. The power of C����� is that it allows users to e�ectively explore
di�erent layout trade-o�s by freeing them from the need to ensure the correctness of each candidate.

2.4 Nested Layout
Our �rst approach to optimizing the nested call query is tomaterialize the join, since joins are usually
expensive, and to use nesting to reduce the size of the resulting layout.

The �rst step is to apply transformation rules (Section 4.2) to hoist and merge the �lters. Now the
join is in a termwith no query parameters, so it can be evaluated at compile time:

select({4=C4A? , 4=C4A2 }, filter($?83 =83?^$283 =832 ,
join(4=C4A? <4=C4A2^4=C4A2 <4G8C? ,

select({83 7!83? , 4=C4A 7!4=C4A? , 4G8C 7!4G8C? }, ;>6),
select({83 7!832 , 4=C4A 7!4=C4A2 }, ;>6))))

After applying two more rules—projection to eliminate unnecessary �elds (Section 4.3) and join
elimination (Section 4.6)—the result is the following layout program (represented graphically in
Figure 3a):

select({4=C4A? , 4=C4A2 }, filter(832 =$283^83? =$?83,
list(select({83 7!83? , 4=C4A 7!4=C4A? , 4G8C 7!4G8C? }, ;>6) as ;?,

tuplecross ( [scalar(;? .83? ), scalar(;? .4=C4A? ),
list(filter(;? .4=C4A? <4=C4A2^4=C4A2 < ;? .4G8C? ,

select({83 7!832 , 4=C4A 7!4=C4A2 }, ;>6)) as ;2,
tuplecross ( [scalar(;2 .832 ), scalar(;2 .4=C4A2 )]))

])
)))

In this programwe see our �rst layout operators: list(·,·) and tuplecross ( [...]).1 The layout algebra
extends the relational algebra with these operators, allowing us to write layout expressions, which
describe how their arguments will be laid out in memory.
The above program can be read as follows. The operator list(@ as ;, @0) creates a list with one

element for every tuple in @ and each element in the list is laid out according to @0. The outermost
list in the program selects the 83 , 4=C4A and 4G8C �elds of the ;>6 relation and lays out each element
1As a point of notation, we separate layout operators from non-layout operators visually by bolding them. This is just to
make the programs easier to read.
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of the list as a tuplecross2. The �rst two elements in the tuple are the scalar representations of the
83? and 4=C4A? �elds, and the third element is a nested list. Note that the content of that inner list
is �ltered based on the value of ;? .4=C4A? and ;? .4G8C? , and each element is laid out as a pair of two
scalars 832 and 4=C4A2 .

The query is nowwell-staged because it satis�es the rules in Section 3.4. At a high-level, the rules
require that we never use a relation without specifying its layout, a requirement that is satis�ed in
this case because all references to the log relation appear in the �rst arguments of list operators.

List

Tuple

Count (~4B) Length (~8B)
...

lp.id lp.enter

Length (~4B)

List Count 
(~2B)

Length 
(~4B)

Tuple lc.id lc.enter

...

(a) Nested.
Hash Index Length (~4B)

Hash Data Length (~2B)

Hash Data (>100B)

Hash Key Table
lp.id

lc.id

List Count 
(~2B)

Length 
(~4B)

Tuple
lp.enter lc.enter

...
...

Value Offset 
(~4B)

...

(b) Hash-index.

Tuple

Hash Index Length (~4B)

Hash Data Length (~2B)

Hash Data (>100B)

Hash Key Map
lp.id

List Count 
(~2B)

Length 
(~4B)

Tuple lp.enter lp.exit

...
...

Ordered Idx
Length (~4B)

Ordered Key Map

List Length 
(~4B)

Tuple lc.id lc.enter

...

Count 
(~2B)

...

lc.counter

Value Offset 
(~4B)

...

Value 
Offset 
(~4B)...

(c) Ordered-index.

Fig. 3. Layouts for theD���M���� queries. The yellow boxes
contain relational data, the white boxes contain metadata,
and the gray boxes are the layout structure.

Figure 3a shows the structure of the re-
sulting layout. This layout is quite compact.
It is smaller than the fullymaterialized join
because of the nesting; the caller id and
enter �elds are only stored once for each
matching callee record. When we bench-
mark this query, we �nd that it performs
reasonably well (11.5ms) and is fairly small
(50Mb).

2.5 Hash-Index Layout
Nowwe optimize for lookup performance
by fully materializing the join and creating
ahash index. This layoutwill be larger than
the nested layout but lookups into the hash
index will be quick, which will make eval-
uating the equality predicates on 83 fast.
Figure 3b shows the structure of the result-
ing layout. When we evaluate the query,
we �nd that it is much faster (0.4ms) but is
larger than the nested query (60Mb).

2.6 Hash- &Ordered-Index Layout
Finally, we investigate a layout (Figure 4)
which avoids the full join materialization,
but still has enough indexing to be fast. We
can see that the join condition is a range
predicate, so we would like to use an index
that supports e�cient range queries to make that predicate e�cient (Section 4.5). Then we can push
the �lters and introduce a hash table to select 83? . The resulting layout is shown in Figure 3c. This
layout will be larger than the original relation, but smaller than the other two layouts (9.8Mb), and it
allows for much faster computation of the join and one of the �lters (0.6ms).
This program introduces three new operators: ordered-idx, hash-idx and depjoin. order-

ed-idx creates indexes that support e�cient range queries. It takes four parameters: :4~B , E0;D4B ,
D??4A , and ;>F4A . :4~B is a relation that de�nes the set of keys and E0;D4B is a dependent relation
that de�nes the layout of values as a function of the keys. ;>F4A and D??4A are the bounds to use
when reading the index (? .4=C4A? and ? .4G8C in this case). hash-idx(:4~B, E0;D4B, ;>>:D?) is similar,

2In this expression, cross speci�es how the tuple will eventually be read. Layout operators evaluate to sequences, so a tuple
needs to specify how these sequences should be combined. In this case, we take a cross product.
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select({4=C4A? , 4=C4A2 },
depjoin(hash-idx(select({83}, ;>6) as⌘,

list(filter(⌘.83 =83^4=C4A >4G8C, ;>6) as ;⌘,
tuplecross ( [scalar(;⌘.4=C4A 7!4=C4A? ), scalar(;⌘.4G8C)])),

$?83) as ?,
filter(83 =$283,

ordered-idx(select({4=C4A }, ;>6) as >,
list(filter(4=C4A => .4=C4A , ;>6) as ;>,

tuplecross ( [scalar(;> .83), scalar(;> .4=C4A 7!4=C4A2 )])),
? .4=C4A? , ? .4G8C))))

Fig. 4. A layout that combines hash- and ordered-indexes.

but it creates e�cient point indexes using hash tables. ;>>:D? is the key to look up in the index (in
this query, the key is $?83).
The more interesting operator is the dependent join operator depjoin. In a dependent join, the

right-hand-side of the join can refer to �elds from the left-hand-side. In the depjoin operator, the
left-hand-side is given a name (here it is ?) that the right-hand-side can use to refer to its �elds.
One way to think about a dependent join is as a relational for loop: it evaluates the right-hand-side
for each tuple in the left-hand-side, concatenating the results. Unlike the layout operators list,
hash-idx and ordered-idx, depjoin executes entirely at runtime. It does not introduce any layout
structure.

3 LANGUAGE
In this section we describe the layout algebra in detail. The layout algebra starts with the relational
algebra and extends it with layout operators. These layout operators have relational semantics,
but they also have layout semantics which describes how to serialize them to data structures. The
combination of relational and layout operators allows the layout algebra to express both a query and
the data store that supports the execution of the query.
Programs in the layout algebra have three semantic interpretations:

(1) The relational semantics describes the behavior of a layout algebra program at a high level. We
de�ne this semantics using a theory of ordered �nite relations [Cheung et al. 2013]. According
to this semantics, a layout algebra programcanbe evaluated to a relation in a context containing
relations and query parameters.

(2) The layout semantics describes how the compiler creates a data �le from a well-staged layout
algebra program. The layout semantics operates in a context which contains relations, but not
query parameters.

(3) The runtime semantics describes how the compiled query executes, reading the layout �le and
using the query parameters to produce the query output. The runtime semantics operates in a
context which contains query parameters but not relations.

These three semantics are connected: the layout semantics and the runtime semantics combine to
implement the relational semantics. The relational semantics serves as a speci�cation. An interpreter
written according to the relational semantics should execute layout algebra programs in the same
way as our compiler.
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G ::= identi�er > ::=asc | desc g ::=cross | concat
E ::= integers | strings | Booleans | �oats | dates | null
4 ::= E | G | G .G | 4+4 0 | 4�4 0 | 4⇥4 0 | 4/4 0 | 4 % 4 0 | 4 <4 0 | 4 4 0 | 4 >4 0 | 4 �4 0 | 4 =4 0

| if 4 then 4C else 45 | exists(@) | first(@) | count() | sum(4) | min(4) | max(4) | avg(4)
C ::= {G1 7!41, ..., G: 7!4: }
@ ::= ; | G | dedup(@) | select(C, @) | filter(4, @) | join(4, @, @0) | group-by(C, [G1, ..., G<], @)

| order-by( [41 >1, ..., 4< ><], @) | depjoin(@ as G, @0) | scalar(G 7!4)
| tupleg (C) | list(@A as G, @) | hash-idx(@: as G, @E, 4: ) | ordered-idx(@: as G, @E, 4;> , 4⌘8 )

Fig. 5. Syntax of the layout algebra.

3.1 Syntax
Figure 5 shows the syntax of the layout algebra. Note that the layout algebra can be divided into
relational operators (select, filter, join, etc.) and layout operators (list, hash-idx, etc.). The
layout algebra is a strict superset of the relational algebra. In fact, the layout operators have relational
semantics in addition to byte-level data layout semantics (see Section 3.2.2).

3.2 Relational Semantics
The semantics (Figure 6) operates on three kinds of values: scalars, tuples and relations. Scalars are
values like integers, Booleans, and strings. Tuples are �nite mappings from �eld names to scalar
values. Relations are represented as �nite, ordered sequences of tuples. [ ] stands for the empty
relation, : is the relation constructor, and ++ denotes the concatenation of relations.
We use sequences instead of sets for two reasons. First, sequences are more like bag semantics

than the set semantics of the original relational algebra. This choice brings the layout algebra more
in line with the semantics of SQL, which is convenient for our implementation. Second, sequences
allow us to represent query outputs which have an ordering.
In the semantic rules, f is an evaluation context; it maps names to scalar values. X is a relational

context; it maps names to relations. We separate the two contexts because the relational context X is
global and immutable; it consists of a universe of relations that exist when the query is executed (or
compiled) which are contained in some other database system. The evaluation context f initially
contains the query parameters, but some operators introduce new bindings in f . [ denotes the
binding of a tuple into an evaluation context. Read f[C as a new evaluation context that contains the
�elds in C in addition to the names already in f .
In the rules, ` separates contexts and expressions and + separates expressions and results. Read

f, X `; +B as “the layout ; evaluates to the relation B in the context f, X .”
We borrow the syntax of list comprehensions to describe the semantics of the layout algebra

operators. For example, consider the list comprehension in the filter rule: [C | C A@ f[C, X `4 +
true], which corresponds to the expression filter(4, @). This list comprehension �lters A@ by the
predicate 4 where A@ is the relation produced by @. 4 is evaluated in a context f[C for each tuple C in
A@ . Comprehensions that contain multiple , as in the join rule, should be read as the cross product
that produces [(G1,~1),(G1,~2),(G2,~1),(G2,~2)] from [G1,G2] and [~1,~2].
Finally, ������(·) is a function from a layout @ to the set of �eld names in the output of @.

3.2.1 Relational Operators. First, we describe the semantics of the relational operators: filter,
join, select, group-by, order-by, dedup, and depjoin. These operators are modeled after their
equivalent SQL constructs. For brevity and because they are straightforward, we omit the rules for
join, select, group-by, order-by, and dedup from Figure 6.
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�3 = ((2>?4?, #0<4) ⇠>=C4GC =)D?;4 = {�3 7!+0;D4} '4;0C8>== [)D?;4]
f :⇠>=C4GC X : �3 7!'4;0C8>= B : �3 C :)D?;4 E :+0;D4 A :'4;0C8>=

E-Tuple
C = {=1 7!41,...,=< 7!4<} 88 . f, X `48 +E8

f, X `C + {=1 7!E1,...,=< 7!E<}
R-Relation

(G,A ) 2X
f, X `G +A

R-Empty
f,X `;+ [ ]

R-Filter
f, X `@+A@ A = [C | C A@ f[C, X `4 + true]

f, X `filter(4, @)+A

R-Depjoin
f, X `@+A A 00=

h
C 0
��� C A C 0 A 0 f[CB , X `@0 +A 0 CB = {B .5 7!E | (5 7!E) 2 C}

i
f, X `depjoin(@ as B, @0)+A 00

R-Scalar
f, X `4 +E

f, X `scalar(= 7!4)+ [{= 7!E}]
R-List

f, X `depjoin(@A as B, @)+A
f, X `list(@A as B, @)+A

R-OrderedIndex

f, X `depjoin(@: as B, filter(E;> B .G E⌘8 , @E))+A
f, X `;;> +E;> f, X `;⌘8 +E⌘8 ������(@: )= [G]

f, X `ordered-idx(@: as B, @E, ;;> , ;⌘8 )+A

R-Tuple1
f, X `tupleg ( [ ])+ [ ]

R-Tuple2
f, X `@1 +A@ f, X `tuplecross ( [@2,...,@=])+A@B

f, X `tuplecross ( [@1,...,@=])+ [C[CB | C A@ CB A@B ]
Fig. 6. Selected relational semantics of the layout algebra. f, X `; +B means ; evaluates to B in f, X .

filter �lters a relation by a predicate 4 . join takes the cross product of two relations and �lters
it using a predicate 4 .
select is used for projection, aggregation, and renaming �elds. It takes a tuple expression C and a

relation A . If C contains no aggregation operators, then a new tuple will be constructed according to C
for each tuple in A . If C contains an aggregation operator (count, sum, min, max, avg), then select
will aggregate the rows in A . If C contains both aggregation and non-aggregation operators, then the
non-aggregation operators will be evaluated on an arbitrary tuple in A .
group-by takes a list of expressions, a list of �elds, and a relation. It groups the tuples in the

relation by the values of the �elds, then computes the aggregates in the expression list. order-by
takes a list of expression-order pairs and a relation. It orders the tuples in the relation using the list of
expressions to compute a key. dedup removes duplicate tuples.
Finally, depjoin denotes a dependent join, where the right-hand-side of the join can depend

on values from the left-hand-side. It is similar to a for-each loop; depjoin(@ as =, @0)3 can be read
“evaluate @0 for each tuple in @ and concatenate the results.” We use depjoin as a building block to
de�ne the semantics of the layout operators.

3.2.2 Layout Operators. The novelty of the layout algebra is that it can express the layout of data in
addition to queries over that data. We introduce the following operators for describing data layouts:
scalar, tuple, list, hash-idx, and ordered-idx. We chose these layout primitives because they
are compositional, have good spatial locality and support common query patterns such as range and
equality predicates.
The layout operators have relational semantics; we show the semantics of selected operators

in Figure 6. Although the layout operators can be used to construct complex, nested layouts, they
3In this expression,= is a scope, and it quali�es the names in@. Scopes are discussed in more detail in Section 3.2.3.
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evaluate to �at sequences of tuples of scalars, just like the relational operators. The rules in Figure 6
only describe the relational behavior of the layout operators; they do not address the question of how
data is laid out or how it is accessed. We discuss these aspects of the layout operators in Section 3.3.
The simplest layout operators are scalar and tuple. Evaluating a scalar operator produces a

relation containing a single tuple. The tuple operator represents a �xed-size, heterogeneous list of
layouts. When evaluated, each layout in the tuple produces a relation, which are combined either
with a cross product or by concatenation.

Note that evaluating a tuple operator produces a relationnot a tuple. Although these semantics are
slightly surprising, there are two reasons why we chose this behavior. First, it is consistent with the
other layout operators, all of which evaluate to relations. Second, tuples can contain other layouts
(lists for example) which themselves evaluate to relations.

The remaining layout operators—list, hash-idx and ordered-idx—have a similar structure.
We discuss the list operator in detail. list is essentially an alias for depjoin. Like depjoin, list
takes two arguments: @A and @. These two arguments should be interpreted as follows: @A describes
the data in the list. Each element of the list has a corresponding tuple in @A , so the length of the list is
the same as the length of @A . One can think of each tuple in @A as a kind of key that determines the
contents of each list element. On the other hand, @ describes how each list element is laid out. @ will
be evaluated separately for each tuple in @A . It determines for each “key” in @A , what the physical
layout of each list element will be, as well as how that element must be read.
Returning to the query in Section 2.4, the inner list operator

list(filter(;? .4=C4A? <4=C4A2^4=C4A2 < ;? .4G8C? , select({83 7!832 , 4=C4A 7!4=C4A2 }, ;>6)) as ;2,
tuplecross ( [scalar(;2 .832 ), scalar(;2 .4=C4A2 )]))

selects the tuples in ;>6where4=C4A2 is between4=C4A? and4G8C? , and creates a list of these tuples. The
�rst argument describes the contents of the list and the second describes their layout. This program
will generate a layout that has a list of tuples, structured as [(8321, 4=C4A21),...,(832=, 4=C4A2=)].

hash-idx and ordered-idx are similar to list. They have a query @: that describes which keys
are in the index and a query @E that describes the contents and layout of the values in the index.
For example, in:

hash-idx(select({83}, ;>6) as⌘,
list(filter({83 =⌘.83}, ;>6) as ;,

tuplecross ( [scalar(; .4=C4A ), scalar(; .4G8C)])), $?83)
the keys to the hash-index are the 83 �elds from the ;>6 relation. For each of these �elds, the index
contains a list of corresponding (4=C4A , 4G8C) pairs, stored in a tuple.When the hash-index is accessed,
$?83 is used as the key. This program generates a layout of the form: {83 7! [(4=C4A , 4G8C),...],...},
which is a hash-index with scalars for keys and lists of tuples for values.

3.2.3 Scopes & Name Binding. The scoping rules of the layout algebra are somewhat more complex
than the relational algebra. There are two ways to bind a name in the layout algebra: by creating a
relation or by using an operator which creates a scope.
All of the operators in the layout algebra return a relation. Some operators simply pass through

the names in their parameter relations. Others, such as select and scalar can be used for renaming
or for creating new �elds.
Some operators, such as depjoin, create a scope. A scope is a tag which uniquely identi�es the

binding site of a name. For example, in depjoin(@ as B, @0), a �eld 5 from @ is bound in @0 as B .5 .
Scoped names with distinct scopes are distinct and scoped names are distinct from unscoped names.
We add scopes to the layout algebra as a syntactically lightweight mechanism for renaming an
entire relation. Renaming entire relations is necessary because shadowing is prohibited in the layout
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algebra. Prohibiting shadowing removes amajor source of complexitywhenwriting transformations.
While we could use select for renaming, we opted to add scopes so that renaming at binding sites
would be part of the language rather than a pervasive and verbose pattern.

There are still situations when renaming entire relations using select is necessary. For example,
in a self-join one side of the join must be renamed.

3.3 Preview of Layout & Runtime Semantics
In this section, we give a preview of the layout and runtime semantics, which are discussed in detail
in Section 6.1 and Section 6.3. The layout semantics speci�es the layout of data in memory at a byte
level. Each layout operator has a serialization format, and the semantics describes how these formats
are composed together. The runtime semantics describes how the layout and query operators read
the data from that serialization format and produce a query output.
The nesting and ordering of the layout operators in a query correspond directly to the nesting

and ordering of the data structures that they represent. This means that we can reorder or transform
operators in the query to restructure the layout. C����� supports the following data structures, each
of which has a corresponding layout operator:

• Scalars: Scalars can be integers, strings, Booleans, and decimal �xed-points.
• Tuples: Tuples are layouts that contain layouts of di�erent types. If a collection contains
tuples, all the tuples must have the same number of elements and their elements must have
the same type. Tuples can be read either by taking the cross product or concatenating their
sub-layouts.

• Lists: Lists are variable-length layouts. Their contents must be of the same type.
• Hash indexes:Hash indexes are mappings between scalar keys and layouts, stored as hash
tables. Like lists, their keys must have the same type and their values must have the same type.

• Ordered indexes:Ordered indexes are ordered mappings between scalar keys and layouts.

At runtime, the layout operators read data from the layout and convert it into a relational form that
the relational operators can consume. In Section 6.3, we discuss how these operators are implemented
as iterators and how the iterators are composed together to form an executable query.

3.4 Staging
Another way to view the three semantic interpretations is from the point of view of multi-stage
programming: the layout is constructed in the compile-time stage and the compiled query reads
the layout and processes it in the run-time stage. While traditionally program staging is used to
implement code specialization, in the layout algebra staging is used to implement data specialization.
This di�erence in focus leads to di�erent implementation challenges. In particular, the “unstaged”
version of a layout algebra program is often large (tens to hundreds of megabytes). The C�����
compiler must be carefully designed to handle this scale.
We are particularly interested in layout algebra programs that can be separated into a compile

time stage that constructs a layout and a runtime stage that reads it. Only a subset of layout algebra
programs can be separated in thisway.We say that programswhich have this property arewell-staged.

At a high level, a program iswell-staged if there are no compile-timedependencies on run-timedata
or vice versa. To formalize this intuition, we introduce run- and compile-time contexts. An expression
is in a compile-time context if it appears in the �rst argument to list, hash-idx, ordered-idx, or
scalar. Otherwise, it is in a run-time context. Additionally, the �elds of relations are considered
compile-time only and query parameters are run-time only. A program is well-staged if and only if
the names referred to in compile-time contexts are bound in compile-time contexts and the names
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( ::= {G1 7!41,...,G< 7!4<} ) ::= [⇠,...,@=] | ... | [@1,...,⇠]
⇠ ::= [·] | select((,⇠) | filter(4,⇠) | join(4, @,⇠) | group-by((, ⇢,⇠) | dedup(⇠)

| list(@ as G,⇠) | list(⇠ as G, @) | tupleg () ) | hash-idx(⇠ as G, @E, 4: ) | hash-idx(@: as G,⇠, 4: )
| ordered-idx(⇠ as G, @E, 4;> , 4⌘8 ) | ordered-idx(@: as G,⇠, 4;> , 4⌘8 )

Fig. 7. The grammar of contexts.

referred to in run-time contexts are bound in run-time contexts. The compiler uses a simple type
system that tracks the stage of each name in the program to check well-stagedness.

Transforming a program into awell-staged form is a key goal of our automatic optimizer (Section 5).
Many of the rules that the optimizer applies can be seen as moving parts of the query between stages.

4 TRANSFORMATIONS
In this section, we de�ne semantics preserving transformation rules that optimize query and layout
performance. These rules change the behavior of the programwith respect to the layout and runtime
semantics while preserving it with respect to the relational semantics. These rules subsume standard
query optimizations because in addition to changing the structure of the query, they can also change
the structure of the data that the query processes.

4.1 Notation
Transformations are written as inference rules. When writing inference rules, 4 will refer to scalar
expressions and@will refer to layout algebra expressions.⇢ and& will refer to lists of expressions and
layouts. In general, the names we use correspond to those used in the syntax description (Figure 5). If
we need to refer to a piece of concrete syntax, it will be formatted as e.g., concat or x.

To avoid writing many trivial inductive rules, we de�ne contexts (Figure 7) [Felleisen and Hieb
1992]. If⇠ is a context and @ is a layout algebra expression, then⇠ [@] is the expression obtained by
substituting @ into the hole in⇠ . In addition to contexts, we de�ne two operators:

C�! and!. @
C�!@0

means that the layout algebra expression @ can be transformed into @0 and @!@0means that @ can
be transformed into @0 in any context. The relationship between these two operators is:

@!@0 ⌘8⇠ .⇠ [@] C�!⇠ [@0]

4.2 Relational Optimization
There is a broad class of query transformations that have been developed in the query optimization
literature [Chaudhuri 1998; Jarke and Koch 1984]. These transformations can generally be applied
directly in C�����, at least to the relational operators. For example, commuting and reassociating
joins,�lter pushing and hoisting, and splitting andmerging�lter and join predicates are implemented
in C�����. Although producing optimal relational algebra implementations of a query is explicitly a
non-goal of C�����, these kinds of transformations are important for exposing layout optimizations.

4.3 Projection
Projection, or the removal of unnecessary�elds from a query, is an important transformation because
many queries only use a small number of �elds; the most impactful layout specialization that can be
performed for these queries is to remove unneeded �elds.

First, we need to decide what �elds are necessary. For a query @ in some context⇠ , the necessary
�elds in @ are visible in the output of⇠ [@] or are referred to in⇠ . Let ����(·) be a function which
returns the set of free variables in a context or layout expression. Let ������(·,·) be a function from
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contexts⇠ and layouts @ to the set of necessary �elds in the output of @:

������(⇠, @)=������(@)\ (������(⇠ [@])[����(⇠))

������(·,·) can be used to de�ne transformations which remove unnecessary parts of a layout.
For example, this rule removes unnecessary �elds from tuples:

& 0= [@ | @ 2&, ������(⇠, @)<;]

⇠ [tupleg (&)]
C�!⇠ [tupleg (& 0)]

There is a similar rule for select and group-by operators.
The projection rules di�er from the others in this section because they refer to the context⇠ . The

other rules can be applied in any context. The context is important for the projection rules because
without it, all the�elds in a layoutwould be visible and therefore “necessary”. Referring to the context
allows us to determine which �elds are visible to the user.

4.4 Precomputation
A simple transformation that can improve query performance is to compute and store the values
of parameter-free terms. This transformation is similar to partial evaluation. The following rule4
precomputes a static layout algebra expression:

������( @ )= [51,...,5: ] G is fresh

@ !list( @ as G, tuplecross ( [scalar(G .51), ..., scalar(G .5: )]))

Hoisting static expressions out of predicates can also be very pro�table:

G,~ are fresh 4 0 is a term in 4 ����(4 0)\������(@)=;
filter(4, @)!depjoin(scalar(4 0 7!~) as G, filter(4 [4 0 :=G .~], @))

.

The expression 4 0 can be precomputed and stored instead of being recomputed for every invocation
of the �lter. Similar transformations can be applied to any operator that contains an expression.
This rule is useful when the �lter appears inside a layout operator. For example, in the query
list(@ as G, filter(4, @0)), a sub-expression of 4 can be hoisted out of the �lter if it refers to the
�elds in @ but not if it refers to the �elds in @0.
In a similar vein, select operators can be partially precomputed. For example:

~0 is fresh @0E =select({sum(4) 7!~0}, @E)
select({sum(4) 7!~}, ordered-idx(@: as G, @E, C;> , C⌘8 ))!
select({sum(~0) 7!~}, ordered-idx(@: as G, @0E, C;> , C⌘8 ))

.

After this transformation, the ordered index will contain partial sums which will be aggregated by
the outer select. This rule is particularly useful when implementing grouping and �ltering queries,
because the �lter can be replaced by an index and the aggregate applied to the contents of the index.
A similar rule also applies to select and list. A simple version of this rule applies to hash-idx; in
that case, the outer select is unnecessary.
This transformation is combined with group-by elimination (Section 4.5) in TPC-H query 1 to

construct a layout that precomputes most of the aggregation.

4Some of the rules make a distinction for parameter-free expressions, which do not contain query parameters. In these rules,
parameter-free expressions are denoted as 4 .
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4.5 Partitioning
Partitioning is a fundamental layout transformation that splits one layout into many layouts based
on the value of a �eld or expression. A partition of a relation A is de�ned by an expression 4 over the
�elds in A . Tuples in A are in the same partition if and only if evaluating 4 over their �elds gives the
same value.

To simplify the rules involving partitions, we de�ne a function ����(·, ·, ·) which takes a layout @,
a partition expression 4 , and a name G , and returns a pair of queries @: and @E :

����(@, 4 , G)= (@: , @E)= (dedup(select( 4 , @)), filter(G .4 = 4 , @)) .

In this de�nition, @: evaluates to the unique valuations of 4 in A . These are the partition keys. Note
that the expression @E contains a free scope G . We use G .4 to denote the expression 4 with its names
quali�ed by the scope G . Once G .4 is bound to a particular partition key, @E evaluates to a relation
containing only tuples in that partition.
The partition function is used to de�ne rules that create hash and ordered indexes from �lters:

G,= is fresh ����(@, 4 , G)= (@: , @E)
����(4 0)\������(@)=;

filter( 4 =4 0, @)!
hash-idx(@: as G, @E, 4

0)

and

G is fresh ����(@, 4 , G)= (@: , @E)
(����(4; )[����(4⌘))\������(@)=;
filter(4;  4 ^ 4 4⌘, @)!

ordered-idx(@: as G, @E, 4; , 4⌘)

.

Partitioning also leads immediately to a rule that eliminates group-by(·):
G is fresh ����(@,  , G)= (@: , @E)

group-by(⇢,  , @)!list(@: as G, select(⇢, @E))
.

There is a slight abuse of notation in this rule. is a list of expressions, so the �lter in @E must have
an equality check for each expression in . This group-by elimination rule is used in many of the
TPC-H queries which contain group-bys.

4.6 Join Elimination
Partitioning can be used to implement join materialization: a powerful transformation that can
signi�cantly reduce the computation required to run a query, at the cost of increasing the size of the
data that the query runs on. Joins are often the most expensive operations in a relational query, so
choosing a good join materialization strategy is critical. C�����’s layout operators admit several
options for join materialization.
For example, joins can be materialized as a list of pairs:

G is fresh ����(@, 4 , G)= (@: , @E) ����(@0, 4 0 , G)= (@0: , @
0
E)

����(4) ✓ ������(@) ����(4 0) ✓ ������(@0)

join( 4 = 4 0 , @, @0)!list(join(4 =4 0, @: , @0: ) as G, tuplecross ( [@E, @
0
E]))

.

Each pair in this layout contains the tuples that should join together from the left- and right-hand-
sides of the join.
Joins can also be materialized as nested lists:

G is fresh ������(@)= [51,...,5=] � =scalar(51),...,scalar(5=)
����(4) ✓ ������(@) ����(4 0) ✓ ������(@0)

join(4 =4 0, @ , @0)!list( @ as G, tuplecross ( [� , filter(G .4 =4 0, @0)]))
.

This layout works well for one-to-many joins, because it only stores each row from the left hand
side of the join once, regardless of the number of matching rows on the right hand side.
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Or, joins can be materialized using a hash table:

G,G 0 are fresh ����(@0, 4 0 , G 0)= (@: , @E) ������(@)= [51,...,5=] ������(@0)= [5 01 ,...,5 0<]
����(4) ✓ ������(@) ����(4 0) ✓ ������(@0)

join(4 = 4 0 , @, @0)!depjoin(@ as G, select( [51,...,5=,5 01 ,...,5 0<], hash-idx(@: as G 0, @: , @E, G .4)))
.

This is similar to how a traditional database would implement a hash join, but in our case the hash
table is precomputed. Using a hash table adds some overhead from the indirection and the hash
function but avoids materializing the cross product if the join result is large.
If the join is many-to-many with an intermediate table, then either of the above one-to-many

strategies can be applied.

4.7 Predicate Precomputation
In some queries, it is known in advance that a parameter will come from a restricted domain. If this
parameter is used as part of a �lter or join predicate, precomputing the result of running the predicate
for the known parameter space can be pro�table, particularly when the predicate is expensive to
compute. Let ? be a query parameter and⇡? be the domain of values that ? can assume.

������(4)= {?} F8 =4 [? :=⇡? [8]]
4 0=

‘
8 (F8^? =⇡? [8])_4 @0=select( [F1,...,F |⇡? |,...], @)

filter(4, @)!filter(4 0, @0)
This rule generates an expressionF8 for each instantiation of the predicate with a value from⇡? .
TheF8s are selected along with the original query @. When we later create a layout for @, theF8s will
be stored alongside it. When the �lter is executed, if the parameter ? is in⇡? , the or will short-circuit
and the original predicate will not run. However, this transformation is semantics preserving even if
⇡? is underapproximate. If the query receives an unexpected parameter, then it executes the original
predicate 4 . Note that in the revised predicate 4 0, ? =⇡% [8] can be computed once for each 8 , rather
than once per invocation of the �lter predicate.

We use this transformation on TPC-H queries 2 and 9 to eliminate expensive string comparisons.

4.8 Correctness
Toshowthat thesemantics thatwehaveoutlined inSection3.2are su�cient toprove thecorrectnessof
nontrivial transformations,weprove the correctness of the equality�lter elimination rule (Section4.5)
inAppendixA.Althoughwedonot prove the correctness of all of the rules, this example demonstrates
that such proofs are possible.

In particular, since our notation mixes relational and layout constructs, even transformations that
manipulate both the run- and compile-time behavior of the query are often local transformations,
and are therefore simple to prove correct.

5 OPTIMIZATION
C����� includes an automatic, cost guided optimizer for the layout algebra. The goal of the optimizer
is to produce a transformation sequence, which is a sequence of transformations that (1) makes the
query well-staged (Section 3.4) and (2) minimizes the cost of executing the query. The optimizer
consists of two components: a transformation scheduling language and a cost model for the layout
algebra.

5.1 Scheduling
The space of transformation sequences is far too large for an exhaustive search. Instead, we consider
a restricted space of sequences. We implemented a small domain speci�c language—the scheduling
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language—that describes a search space of transformation sequences. This language is inspired by
Stratego [Visser 2005] andprovides combinators for sequencing transformations,�x-points, selecting
locations to apply transformations, and branching. Running a program in the scheduling language
performs a search over transformation sequences. The optimizer is implemented as a program in
the scheduling language, and it captures some of the domain knowledge that we have about how to
optimize query layouts.

The optimizer scheduling program has four phases: join nest elimination, hash-index introduction,
ordered-index introduction, and precomputation. Cleanup transformations and other manipulations
that allow the main transformations to apply are interleaved between these phases.
The join nest elimination phase looks for unparameterized join nests and replaces them with

layouts. As discussed in Section 4.6, there are several ways to eliminate a join operator. The right
choice depends on whether the join is one-to-one or one-to-many. To eliminate a join nest, the
optimizer performs an exhaustive search using the join elimination rules and uses the cost model to
choose the least expensive candidate.

The hash- and ordered-index introduction phases attempt to replace �lter operators with indexes.
When replacing a �lter operator with an index, the most important choice to make is where in the
query to place the �lter. This choice determines which part of the layout the index will partition. The
optimizer exhaustively searches over the possible index placements and uses the cost model to select
the best candidate.

Finally the precomputation phase selects unparameterized parts of the query to be computed and
stored.

Before returning the query, the scheduler checks that it is well-staged (Section 3.4). If it is not, the
query is discarded and scheduling fails.

We run the optimizer scheduling program in aMarkov chainMonteCarlo outer loop that randomly
disables transformations. A single run of the optimizer consists of many runs of the scheduling
program,with transformations randomly disabled.Weuse the costmodel to decidewhen to transition
in the Markov chain. We keep track of the best transformation sequence that we have found and
return that at the end of optimization.

The output of the optimizer is a sequence of transformation rules that introduce layout operators,
minimizing the cost of executing the resulting query. A pleasant feature of the optimizer is that
because it simply runs transformation rules, it is semantics preserving if all of the rules are. This
means that all sequences are equally correct—they di�er only in the quality of their result.

Manual Optimization. The scheduling language can also be used to write manual transforma-
tion scripts. The optimizer scheduling program is general purpose and includes several rounds of
backtracking search, but the scheduling language can easily represent straight-line sequences of
transformations.

5.2 CostModel
When optimizing a query, we care primarily about its runtime cost; we assume that any compile time
cost is acceptable. The staged nature of the layout algebra makes estimating the runtime cost of a
query complicated because the runtime cost depends on the sizes of the data structures in the layout.
To compute these sizes we need to execute the compile-time portion of the query.

To assist in this cost estimationwe introduce an abstraction of the query that we call a layout shape
(Figure 8). A layout shape is essentially an abstract domain for the layout portion of a query. We use
an interval abstraction to track the range of integer and �xed-point values in the layout as well as the
number of elements in collections like lists and indexes. Given a layout shape, we can we use simple
models of the costs of the runtime query operators to estimate the cost of executing the entire query.
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= ::= Z A ::= [=, =]
C ::= intT(A ) | boolT | fixedT(A , =B20;4 ) | stringT(A2⌘0AB ) | tupleT( [C1, ..., C: ]) | listT(C, A4;4<B )
| hash-idxT(C: , CE, A:4~B ) | ordered-idxT(C: , CE, A:4~B ) | emptyT | funcT(C1,...,C<)

Fig. 8. The syntax of layout shapes.

f `scalar(4 7!=)+G
G is an integer

f `scalar(4 7!=) : intT( [G,G])

f `@1 :C1,...,f `@: :C:
C = tupleT( [C1,...,C: ],g)
f `tupleg ( [@1,...,@: ]) :C

f `@ :C
f `filter(4, @) : funcT(C)

f `@: +A CE =
√

f0 2A ,f0`@E :C 0C
0

list(@: as =, @E) : listT(CE, [|A |, |A |])
C = intT( [;, ⌘]) C 0= intT( [; 0, ⌘0])
CtC 0= intT( [min(;, ; 0),max(⌘, ⌘0)])

Fig. 9. Selected semantics of the shape inference pass.

Computing the layout shape is expensive because it involves running the compile time portion
of the query. We want to compute the costs of many layouts during optimization, so optimizing
the shape computation is critical. We use two techniques during optimization to make the shape
computation cheaper. First, we compute the shape on a sample of the database. Using a samplemeans
that the shape may be underapproximate (the ranges in the sample shape will be smaller than in the
true shape), but we have found that this is acceptable during optimization. Second, we compute the
shape of nested layouts in parallel. For example, to compute the shape of this layout:

list(dedup(select({83}, ;>6)) as 0, list(filter(0.83 =83, ;>6) as 1, scalar(1 .4G8C))),
C�����will issue these SQL queries:

select count(distinct 83) as G1
from ;>6;

select<8=(2) as G2,<0G (2) as G3
from (select count() as 2

from ;>6 group by 83);

select<8=(4G8C) as G4,
<0G (4G8C) as G5

from ;>6;

It uses the results to construct this shape: listT(listT(intT( [G4,G5]), [G2,G3]), [G1,G1]),where [G4,G5]
is the domain of the values of the scalar and [G2,G3] and [G1,G1] are the domains of the list lengths.
These queries can be run concurrently, and if one of the queries times out we can approximate its
results while still being able to compute the rest of the shape.

6 COMPILATION
The result of running the optimizer or manually applying transformation rules is a program in the
layout algebra. This program is still quite declarative, so there is a signi�cant abstraction gap to cross
before the program can be executed e�ciently. Compilation of layout algebra programs proceeds in
three phases: data structure specialization, serialization and code generation.

6.1 Layout Semantics
The layout semantics describe how the layout portion of the program is converted to a binary
representation. We use the specialized data structure (Section 6.2) for each operator to determine
exactly how the layout is serialized.
Each of the layout operators has a binary serialization format which is intended to (1) take up

minimal space and (2) minimize the use of pointers to preserve data locality.
• Integers are stored using a variable number of bytes (1-8).
• Dates are represented as the number of days since the epoch and stored as integers.
• Booleans are represented as integers that are either 0 or 1.
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1 :⌫~C4 BCA8=6 f,C :)D?;4 X : �3 7!'4;0C8>=

f,X `;#””
f, X `@#1

f, X `filter(4, @)#1
f, X `@#1 f, X `@#1 0

f, X `join(4, @, @0)#11 0

f, X `4 +E
1 is the binary format of E

f, X `scalar(4)#1

f, X `@: + [C1,...,C=] 81 8 =. f[C8 , X `@E #18
f, X `scalar( |11 |+···+ |1= |)#1;4= f, X `scalar(=)#12C

f, X `list(@: ,@E)#12C1;4=11 ...1=

81 8 =. f, X `@8 #18
f, X `scalar( |11 |+···+ |1= |)#1;4=

f, X `tupleg ( [@1,...,@=])#1;4=11 ...1=

Fig. 10. Selected layout semantics.

• Fixed point numbers are normalized to a �xed scale, and stored as integers.
• Strings are length-pre�xed and are not null terminated.
• Tuples are length-pre�xed concatenations of their child layouts.
• Lists are storedas a lengthandanelement count followedby the concatenationof their elements.
They can be e�ciently scanned through, but not accessed randomly by index, because their
elements may be variable-sized.

• Hash indexes are implemented using minimal perfect hashes that index into a table of value
o�sets.

• Ordered indexes contain an ordered table of keys and value o�sets. Lookups are performed
using a binary search on this table.

Serializationproceeds as described inFigure 10. Each layout operator is serializedby�rst serializing
its children, then constructing the appropriate data structure. For example, to construct the layout
for list(@: as:,@E), we �rst serialize the dependent relation@E for each tuple in@: . We concatenate
the resulting layouts and prepend the header �elds 2>D=C and ;4=6C⌘, which contain the number
of list items and the length of the list in bytes respectively. The query operators have trivial layout
semantics that simply concatenate their child layouts.

6.2 Data Structure Specialization
The �rst step in the C����� compiler is to generate specialized instances of the layout algebra
data structures. Each instance of a layout operator in a query gets a specialized data structure
implementation. We use the shape (Section 5.2) of the layout to guide the specialization process.

First, we compute the layout shape of the query. Unlike the optimizer, which uses a fast underap-
proximate method to compute the shape, the compiler needs an overapproximation. Computing an
overapproximate shape ensures that if we construct a data structure that supports the values in the
shape, it will support all of the values in the true dataset.
Our data structure implementations follow a common pattern. They consist of a header that

contains �elds like lengths, counts, or o�sets and a body that contains the data. For example, strings
are represented using a length header and a body that contains the byte-encoded data. C�����
supports the following generic specializations for all structures:

• Field narrowing: C����� uses the layout shape to determine the range of certain header �elds
(like string lengths). It then chooses the smallest byte-width that is large enough to support
the range of values in the �eld.

• Field elision: If the layout shape shows that a �eld will only ever contain a single value, then
C����� elides the �eld entirely. For example, this specialization allows �xed-size tuples to be
stored with zero overhead.

C����� implements additional specializations for certain layout operators.
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Integers are narrowed in the same way that �elds are. We use the layout shape to determine the
minimal number of bytes necessary to hold the values that appear in the layout. The narrowing can
di�er for each integer layout operator.

For �xed point numbers, the layout shape contains a minimal scaling factor that is precise enough
for all of the values and a domain covering the numerators of the �xed points. The numerators are
stored as integers and the shared scaling factor is not stored. Each �xed point layout operator can
have a di�erent scaling factor.

Hash indexes are implemented using a minimal perfect hash that is computed per-index [Botelho
et al. 2007; Davi de Castro Reis et al. 2011]. Using a minimal perfect hash allows our hash indexes to
have high load factors (up to 99%) and also allows us to ignore the possibility of collisions.

After performing data structure specialization, we serialize the layout as described in Section 6.1,
using the specializations to decide which �elds to narrow or remove.

6.3 Runtime Semantics
The last step in compilation is to generate the code that reads the layout. Each operator has a
corresponding iterator: the layout operators read from the layout and produce a stream of tuples and
the relational operators consume and produce tuple streams. We construct these iterators according
to themethod in [Tahboub et al. 2018]. This method is referred to as push-based or data-centric query
evaluation.
In push-based evaluation, each iterator takes a callback which it calls for each tuple in its output

stream. To run the query, the user passes the root iterator a callback function that processes the
output tuples. For a given query, the callbacks are known statically, so we inline them. This produces
a single loop nest with no function calls and minimal branching.
Each operator in the layout algebra has a corresponding iterator implementation. The relational

operators are implemented as described in [Tahboub et al. 2018]. The layout operators each have
an iterator that reads the layout. These iterators are modi�ed depending on the data structure
specializations being performed. Speci�cally, the iterators can be modi�ed to implement the �eld
narrowing and elision specializations discussed in Section 6.2.
The push-based evaluation method is in contrast to pull-based evaluation, which is used in the

traditional iteratormodel. In pull-based evaluation, each query operator is compiled to an iterator that
consists of a state structure and a step function. Each time a query operator is stepped, it recursively
steps its children and updates its state. The query is executed by repeatedly stepping the root iterator.
We implemented pull-based evaluation in an early prototype of C����� and found that optimizing
the resulting code was di�cult because of the large amount of branching and control �ow.
The drawback of push-based query evaluation is that certain operators, such as deduplication

and ordering, must bu�er their inputs before processing them. Rather than implement bu�ering,
we restrict the use of these operators and wherever possible we replace them with layout-based
implementations that perform these operations at compile time.

CodeGeneration. C�����performscodegeneration in twophases. First, a syntax-directed lowering
pass transforms each query and layout operator into an imperative intermediate representation,
using the layout shape to generate the layout reading code. Next, we run loop invariant code motion
and reorder the evaluation of predicates so that expensive clauses in conjunctive predicates are
evaluated last. Finally, we lower the imperative IR to LLVM IR. LLVM performs further low-level
optimizations and emits code, completing the code generation phase.
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6.4 Performance of Staging
As discussed in Section 5.2, running the compile time part of a query is costly. During compilation of
a query, we run its compile time part once to generate a layout shape and again during serialization.
We evaluate the compile time part of a query by translating it to a SQL query, running that query
against a backing database, then folding over the results. This process is the most expensive part
of compilation, since it involves executing a complex query and reading a large amount of data
from the database. Unlike the optimizer, the compiler cannot tolerate an approximate result, so we
implemented two optimizations that do not involve approximation to manage this cost.

First, we perform a series of query optimizations before sending a query to the database. The most
important optimization is the removal of dependent joins [Neumann and Kemper 2015]. Each level
of layout nesting introduces an additional dependent join, and many database optimizers are not
able to optimize them away. Removing them signi�cantly improved the performance of our queries.
Second, we use Amazon Redshift as the backing database for the C����� compiler. Redshift is a

high-performance distributed column oriented database, and switching to Redshift from PostgreSQL
yielded a signi�cant performance improvement.C����� is not a good �t for this use case, because the
queries that the compiler generates are speci�c to the program being compiled, so are not amenable
to caching.
After implementing these optimizations, the compilation time for TPC-H query 3 dropped from

over 12 hours to less than 20 minutes. Running the compiler using a 2 node Redshift cluster, the
maximum compilation time for an optimizer generated query is 100 minutes with a median of 4.8
minutes.

7 EVALUATION
We test three hypotheses about C�����’s performance: (1) C�����’s layout optimizations produce
queries that are faster than existing in-memory databases, (2) the resulting layouts are smaller
than in existing databases, and (3) the deductive approach to query optimization scales better than
generate-and-test approaches.
We compare C����� with three other systems: H���� [Neumann 2011], C��� [Loncaric et al.

2018], and C������� [Yan and Cheung 2019]. H���� is an in-memory column-store which has
a state-of-the art vectorizing query compiler. It implements compilation techniques that are well
outside the scope of this paper, such as using SIMD operations to operate on multiple tuples at a time.
C��� is a state-of-the-art generate-and-test based program synthesis tool that generates specialized
data structures from relational queries. C������� is similar to C���, but focuses on object queries.

7.1 TPC-H Analytics Benchmark
In Section 2, we evaluated C����� on a query from the D���M���� system. In this section, we
perform an in-depth evaluation on the TPC-H benchmark. TPC-H is a standard database benchmark,
focusing on analytics queries. It consists of a data generator, 22 query templates, and a query
generator which instantiates the templates. The queries in TPC-H are inherently parametric, and
their parameters come from the domains de�ned by the query generator. To build our benchmark,
we took the query templates from TPC-H and encoded them as C����� programs. It is important
that the queries be parametric. Specializing a non-parametric query is uninteresting because it can
simply be evaluated and the result stored.

TPC-H is a general purpose benchmark, so it exercises a variety of SQL primitives. We chose not
to implement all of these primitives in C�����, not because they would be prohibitively di�cult, but
because they are not directly related to the layout specialization problem. In particular, C����� does
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not support executing order-by, group-by, join, or dedup operators at runtime5, and it does not
support limit clauses at all. Some of these operators can be replaced by layout specialization, but
others cannot. We implemented all of the queries in TPC-H, except for query 13 because it contains
an outer join. We removed runtime ordering and limit clauses from seven other queries. When
evaluating the TPC-H queries, we used the 1GB scale factor. We ran our benchmarks on an Intel
XeonW–2155 with 64GB of memory.

7.2 ComparisonwithH����
We run each benchmark query using the following con�gurations:

• Baseline:We useH���� as our baseline. Each query is run on a database containing the full
TPC-H dataset.

• Manual:Wemanually implement the transformations that C����� performs inH����. We
do this by generating a specialized set of materialized views and indexes that replicate the
specialized layout the C����� produces. H���� supports a smaller space of layouts than
C�����, so this translation is best-e�ort.H���� does not support nested layouts, for example.

• Expert:We runC����� using an expert-written transformation sequence for each querywhich
generates an e�cient, well-staged version of the query. The advantages over the manual
approach are: (1) the transformations are correctness-preserving, so we don’t have to worry
about introducing bugs while optimizing and (2) we can use the C����� compiler to generate
the specialized layout and query code.

• Optimizer: We run the C����� optimizer (Section 5) on a direct translation from the SQL
implementation of the query to the layout algebra. The optimizer searches over the space
of transformation sequences, using its cost model to select the best sequence. We run the
optimizer with a 2 hour timeout.

For each query and con�guration, we measure its runtime, layout size, and memory footprint.
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Fig. 11. Performance on TPC-H queries.

Runtime. Figure 11 shows the speedup
over baselineH���� for theManual, Ex-
pert, and Optimizer con�gurations. The
Manual con�guration requires themost
work from the user and o�ers no assur-
ance of correctness. It is faster than the
baseline more than half of the time. The
Expert con�guration is faster than the
baseline 85% of the time and faster than
the Manual con�guration 60% of the
time. The optimizer beats the baseline
80% of the time. These results show that the Expert and Optimizer con�gurations o�er a compelling
performance advantage over the baseline and a compelling user interface advantage over theManual
con�guration.
LayoutSize.Werecorded the size of the layouts for theManual,Expert, andOptimizer con�gurations.
We exclude Baseline because it has a large constant size for all queries (approximately the size of the
TPC-H data—1GB). Figure 12 shows Expert andOptimizer withManual as the new baseline. Expert
beatsManual on all benchmarks andOptimizer beatsManual on 95%.

5These operators can be processed into the compiled form of the query.
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Fig. 12. Layout size of TPC-H queries.

The absolute size of the Expert lay-
outs is small—less than 10MB for 55%
of the queries and less than 100MB
for 90% of the queries. The size of all
layouts is 918.4MB, which compares
favorably to the 1.1GB original data
set. The size di�erence between C���
���’s layouts and the original data
supports the hypothesis that param-
eterized queries rely on fairly small
subsets of the whole database, mak-
ing layout specialization a pro�table
optimization even when it involves
replication.
Memory Use. Finally, we measured
the peakmemoryuse of the query pro-
cess for each query.H���� consistently uses the same amount of memory as the layout size. In some
cases it uses more, presumably because it has large runtime dependencies like LLVM. In contrast,
Figure 12 shows that C�����’s peak memory use is signi�cantly lower thanH���� for all expert
queries and for 95% of the optimizer queries.

7.3 ComparisonwithC���&C�������

C���.We transformed our input queries intoC���’s speci�cation format and ranC���with a 6 hour
timeout. In this con�guration, we found that C���was unable to make signi�cant improvements on
all but two of the TPC-H queries. On Q4, C��� precomputed one of the joins and a �lter. On Q17,
C��� added an index. We ran both of these queries and found that despite the optimization Q4 was
slower than baselineH���� at 5.4s and Q17 was too slow to run on the entire TPC-H dataset.

There are two reasons why C����� performs better than C��� in our comparison. First, C�����’s
deductive approach to optimization scales better than C���’s generate and test method as the query
size increases. This means that C����� is able to spend more time choosing between data structures,
rather than looking for a correct implementation. Second, C����� has custom implementations of
its data structures that take advantage of the fact that the database is read-only and known to the
compiler. C��� uses the C++ STL collections, which can’t make either assumption. So, C����� is
somewhat better at choosing layouts and has layouts that are better tuned for its use case.
C�������.We attempted to use C������� to optimize four of the TPC-H queries, which were
implemented as benchmarks by the C������� authors, but we were unable to build and run the
generated code. 6 Manually examining the layouts for Q1 and Q3–6, we �nd that C������� uses
projection and indexes in many of the same places that C����� does, but misses some optimizations
thatC�����can takeadvantageof, suchasaggregateprecomputation (Section4.4).AsC�������uses
a generate-and-test strategy that is similar to C���, it is likely to have similar scalability problems on
larger queries. Like C���, it relies on C++ collections which do not have data-speci�c specializations.

6At the time of writing,C�������was not publicly released, so we used a research prototype that the authors kindly provided
to us. We have contacted the C������� authors, but have not yet been able to debug the query code.
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Table 1. Performance of pairs of queries compiled together.

Query Pair Query Runtime (ms) Memory (MB) Size (MB)
Optimizer Manual Optimizer Manual Optimizer Manual

1 & 2 1 0.02 0.03 2.3 233.9 102.9 206.62 0.08 3.55 2.9 233.9

2 & 3 2 0.08 3.57 2.9 1088.8 220.6 1088.43 4.77 7.46 25.8 1089.1

3 & 4 3 5.05 7.20 25.5 879.4 130.8 966.84 0.08 0.02 3.4 879.5

4 & 5 4 0.08 0.02 3.3 35.4 17.5 21.05 0.02 0.54 2.9 35.5

7.4 Performance ofMultiple�eryWorkloads
We experimented with combining pairs of queries using the following reduction. A pair of queries @
and @0may be reduced to a single query with an additional parameter 83 that chooses the query to
execute:
filter(@83 =83, tupleconcat ( [tuplecross ( [scalar(0 7!@83), @]), tuplecross ( [scalar(1 7!@83), @0])]).

We�nd that the performance of the combined queries is noworse than the performance of the queries
when compiled separately. However, our optimizer does not take advantage of sharing opportunities
between multiple queries, so the size of the combined layout is the sum of the sizes of the individual
layouts. Adding transformations that exploit sharing is left to future work.

7.5 Summary
Our evaluation shows that 95%of the time,C�����produces queries that are faster than a state-of-the-
art in-memory database. The layout optimizations that C����� implements are able to outperform
a heavily engineered vectorizing compiler, in some cases by multiple orders of magnitude. The
layouts produced by C����� are up to two orders of magnitude smaller than a state-of-the-art
in-memory database. This reduction in size translates to up to two orders of magnitude reduction in
memory footprint. Finally, C�����’s deductive optimization scales better than existing generate-
and-test synthesis methods. It is able to optimize 21 of the TPC-H queries—more than the existing
techniques—while supporting a rich space of optimizations.

8 RELATEDWORK

Deductive Synthesis. There is a long line of work that uses deductive synthesis and program
transformation rules to optimize programs [Blaine et al. 1998; Püschel et al. 2005], to generate data
structure implementations [Delaware et al. 2015], and to build performance DSLs [Ragan-Kelley et al.
2013; Sujeeth et al. 2014]. C����� is a part of this line of work: it is a performance DSL which uses
deduction rules to generate and optimize layouts. However its focus on particular data sets and on
deduction rules to optimize data in addition to programs separates it from previous work.
Data Representation Synthesis. The layout optimization problem is similar to the problem of
synthesizing a data structure that corresponds to a relational speci�cation [Hawkins et al. 2010, 2011;
Loncaric et al. 2018, 2016; Sujeeth et al. 2014].

The best data structure synthesis tool—C���—uses a generate-and-test strategy. The testing phase
uses an SMT solver to perform bounded veri�cation of candidates. In our experiments (Section 7.2)
we found that C���’s veri�cation step does not scale to the TPC-H queries. C����� uses deductive
synthesis to avoid this costly veri�cation step by only searching the space of correct programs.
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Table 2. Runtime of queries derived from TPC-H (ms). Memory use is the peak resident set size during a query
(Mb). Size is the layout size (Mb).

Manual Expert Optimizer

Q# Time3 Time2 Mem. Size Time2 Mem. Size Time2 Mem. Size

1 5.11 0.03 22.9 17.8 0.01 2.4 0.1 0.01 2.3 0.1
2 0 2.34 3.46 231.9 206.6 0.55 9.8 37.2 0.08 2.7 104.0
3 01 22.35 7.67 877.4 966.8 4.33 18.3 81.0 4.17 19.1 85.6
4 7.33 0.02 22.7 17.8 <0.01 2.5 0.2 <0.01 2.2 0.2
5 11.71 0.55 33.3 24.1 <0.01 2.6 1.2 <0.01 2.5 1.2
6 2.01 2.10 897.6 858.8 0.74 7.1 31.0 0.41 4.8 14.8
7 12.51 0.01 21.8 17.8 <0.01 2.3 <0.1 0.13 2.3 0.2
8 3.46 15.00 527.4 375.4 4.24 15.8 68.9 <0.01 2.6 29.5
9 35.70 33.79 1544.9 1550.8 39.71 358.6 365.0 132.75 252.7 256.5
10 01 23.00 28.15 430.3 375.4 6.92 27.1 25.4 8.83 102.9 103.1
11 5.63 7.73 94.7 68.2 0.04 2.6 5.3 8.95 15.7 13.9
12 4.70 0.03 23.1 17.8 <0.01 2.3 0.2 <0.01 3.1 3.0
14 3.12 <0.01 21.8 17.8 <0.01 2.2 <0.1 <0.01 2.1 <0.1
15 8.06 <0.01 22.1 17.8 <0.01 2.4 0.2 4.70 106.8 107.2
16 1 39.56 2.78 39.8 35.7 1.41 5.3 3.9 10.94 27.1 25.6
17 9.83 1.20 1224.9 1224.7 0.02 4.1 49.6 <0.01 2.1 <0.1
18 0 47.66 2.43 375.5 295.7 44.26 74.1 73.5 74.66 88.7 88.5
19 24.44 0.01 25.5 17.8 0.08 2.2 0.2 <0.01 2.1 <0.1
20 8.73 9.87 1300.9 1377.8 12.46 91.1 173.3 12.27 91.8 173.3
21 01 14.33 0.04 22.8 21.0 <0.01 2.3 0.2 0.75 3.6 1.4
22 1 20.09 4.61 33.5 31.5 11.36 3.9 1.8 10.87 4.2 2.0

0 Limit clause removed. 1 Run time ordering removed. 2 Specialized. 3 Unspecialized.
C������� is another tool for layout optimization [Yan and Cheung 2019]. It di�ers from C�����

and C��� in that it considers object queries from ORMs rather than SQL. Like C���, C�������
relies on a generate and test strategy with a bounded veri�cation step. Its optimizer exhaustively
enumerates layouts and query plans separately and uses the veri�er to determine if a plan/layout
combination is correct. C������� avoids the scalability problems inherent to this approach by
restricting its search space. For example, it only considers a single level of layout nesting, which
limits data locality. It does not consider plans that perform partial aggregation (Section 4.4) or
precomputation of predicates (Section 4.7). Any extensions to C�������must be carefully chosen
to avoid search space explosion. In contrast, C����� can support complex query transformations in
a straightforward way because they do not need to be discovered by an exhaustive search.

Unlike the previous work, C����� considers a re�nement of the data structure synthesis problem
where both the query and the dataset are known to the compiler. This additional information allows
C����� to use optimizations which would not be safe if the data were not known. In particular,
C����� is able to signi�cantly reduce the size of its optimized data sets by generating specialized
collection implementations based on the properties of the data to be stored. The existing work relies
on o�-the-shelf collections libraries which cannot be specialized in this way.
Database Storage. Traditional databases are mostly row-based. Column-based database systems
(e.g.,H���� [Neumann 2011], MonetDB [Boncz and Kersten 1999] and C-Store [Stonebraker et al.
2005]) are popular for OLAP applications, outperforming row-based approaches by orders of mag-
nitude. However, the existing work on database storage generally considers speci�c storage opti-
mizations (e.g., [Ailamaki et al. 2001]) or specializations that bene�t broad classes of data such as
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scienti�c [Stonebraker 2012] or geo-spatial [Gutiérrez and Baumann 2007] data. One exception is
RodentStore [Cudré-Mauroux et al. 2009], which proposed a language to describe storage layouts and
showed that di�erent layouts could bene�t di�erent applications. However, a compiler was never
developed to create the layouts from this language; the paper demonstrated its point by implementing
each layout by hand.
Materialized View and Index Selection. The layouts that C����� generates are similar to ma-
terialized views, in that they store query results. C����� also generates layouts which contain
indexes. Several problems related to the use of materialized views and indexes have been studied
(see [Halevy 2001] for a survey): (1) the view storage problem that decides which views need to be
materialized [Chirkova and Genesereth 2000], (2) the view selection problem that selects view(s)
that can answer a given query, (3) the query rewriting problem that rewrites the given query based
on the selected view(s) [Pottinger and Levy 2000], (4) the index selection problem that selects an
appropriate set of indexes for a query [Bruno and Chaudhuri 2005; Gupta et al. 1997; Stonebraker
1974; Talebi et al. 2008]. However, materialized views are restricted to being �at relations. The layout
space that C����� supports is much richer than that supported by materialized views and indexes.
In addition, the view selection literature has not previously considered the problem of generating
execution plans for chosen views and indexes.
QueryCompilation.C����� uses techniques from the query compilation literature [Klonatos et al.
2014; Shaikhha et al. 2016; Tahboub et al. 2018]. It extends these techniques by using information
about the layout to specialize its queries.

9 CONCLUSION
We have presented C�����, a domain speci�c language for expressing a wide variety of physical
database designs, and a compiler for this language. We have evaluated it empirically and shown that
it is competitive with the state-of-the-art in memory database systems.

A CORRECTNESSOF FILTER ELIMINATION
In this section we discuss the correctness of the �lter elimination rule (Section 4.5) in detail. We show
that the relational semantics is su�ciently detailed to prove the correctness of the transformation
rules.

We say that two programs @ and @0 are equivalent if they produce the same value in every context.
We denote equivalence as @⌘@0 according to the following rule:

Equiv
8f,X,B . f,X `@+B() f,X `@0 +B

@⌘@0

We say that a rule @!@0 is semantics-preserving if @⌘@0.
Nowwe prove that the �lter elimination rule:

G,= is fresh ����(@, 4 , G)= (@: , @E) ����(4 0)\������(@)=;
filter( 4 =4 0, @)!hash-idx(@: as G, @E, 4 0)

is semantics-preserving.

T������A.1. If ����(@, 4, G)= (@: , @E) and G is a fresh scope, then
filter(4 =4 0, @)⌘hash-idx(@: as G, @E, 4 0).

P����. By Equiv, the right-hand-side of this implication is equivalent to:

8f,X,B . f,X `filter(4 =4 0, @)+B() f,X `hash-idx(@: as G, @E, 4 0)+B .
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By R-HI,

f,X `filter(4 =E, @)+B() f,X `depjoin(@: as G, filter(G .4 =E, @E))+B,
where f, X `4 0 +E .

By the de�nition of ���������, @: =dedup(select({4}, @)) and @E =filter(G .4 =E, @), so
f,X `filter(4 =E, @)+B()
f,X `depjoin(dedup(select({4}, @)) as G, filter(G .4 =E, filter(G .4 =4, @)))+B .

We can simplify the �lter operators to get:

f,X `filter(4 =E, @)+B()
f,X `depjoin(dedup(select({4}, @)) as G, filter(G .4 =E^G .4 =4, @))+B .

Proving the correctness of this simpli�cation is straightforward and does not rely on the correctness
of the hash-index introduction rule.
By R-Filter and R-Depjoin (and some abuse of notation), this is equivalent to:

[C | C filter(4 =E, @)]=
"
C

����� C
0 dedup(select({4}, @))
C filter(C 0=E^C 0=4, @)

#
.

At this point there are two cases of interest. First, assume that E 2dedup(select({4}, @)). By the
semantics of dedup, E will appear exactly once in this query result if it appears at all.We can conclude
that in this case:

[C | C 0 dedup(select({4}, @)), C filter(C 0=E^C 0=4, @)]
= [C | C 0=E, C filter(C 0=E^C 0=4, @)]++
[C | C 0 dedup(select({4}, @)), C 0<E, C filter(E =C 0^C 0=4, @)]

= [C | C filter(E =E^E =4, @)]++[C | C filter(E <E^E <4, @)]
= [C | C filter(E =4, @)]++[ ]
= [C | C filter(E =4, @)] .

In the second case, assume that E 8dedup(select({4}, @)). In this case:
[C | C 0 dedup(select({4}, @)), C filter(C 0=E^C 0=4, @)]

= [C | C 0 dedup(select({4}, @)), C 0<E, C filter(E =C 0^C 0=4, @)]
= [C | C filter(E <E^E <4, @)]
= [ ] .

By our assumption, there is no 4 such that 4 =E , so filter(4 =E, @)= [ ].
In both cases, the two programs are equivalent, so we can conclude that the rule is semantics-

preserving. ⇤

We can conclude from this proof that showing correctness for the transformation rules is feasible.

B SEMANTICSOF THE LAYOUTALGEBRA

�3 = ((2>?4?, #0<4) ⇠>=C4GC =)D?;4 = {�3 7!+0;D4} '4;0C8>== [)D?;4]
f :⇠>=C4GC X : �3 7!'4;0C8>= B : �3 C :)D?;4 E :+0;D4 A :'4;0C8>=

E-Tuple
C = {=1 7!41,...,=< 7!4<} 88 . f, X `48 +E8

f, X `C + {=1 7!E1,...,=< 7!E<}
R-Relation

(G,A ) 2X
f, X `G +A

R-Empty
f,X `;+ [ ]
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R-Filter
f, X `@+A@ A = [C | C A@ f[C, X `4 + true]

f, X `filter(4, @)+A

R-Depjoin
f, X `@+A A 00=

h
C 0
��� C A C 0 A 0 f[CB , X `@0 +A 0 CB = {B .5 7!E | (5 7!E) 2 C}

i
f, X `depjoin(@ as B, @0)+A 00

R-Scalar
f, X `4 +E

f, X `scalar(= 7!4)+ [{= 7!E}]
R-List

f, X `depjoin(@A as B, @)+A
f, X `list(@A as B, @)+A

R-OrderedIndex

f, X `depjoin(@: as B, filter(E;> B .G E⌘8 , @E))+A
f, X `;;> +E;> f, X `;⌘8 +E⌘8 ������(@: )= [G]

f, X `ordered-idx(@: as B, @E, ;;> , ;⌘8 )+A

R-Tuple1
f, X `tupleg ( [ ])+ [ ]

R-Tuple2
f, X `@1 +A@ f, X `tuplecross ( [@2,...,@=])+A@B

f, X `tuplecross ( [@1,...,@=])+ [C[CB | C A@ CB A@B ]

R-Tuple3
f, X `@1 +A@ f, X `tupleconcat ( [@2,...,@=])+A@B

f, X `tupleconcat ( [@1,...,@=])+A@++A@B

R-HashIdx
f, X `depjoin(@: as B, filter(B .G =E, @E))+A f, X `; +E ������(@: )= [G]

f, X `hash-idx(@: as B, @E, ;)+A

R-Join
f, X `@+A f, X `@0 +A 0 B = [C[C 0 | C A C 0 A 0 f[C[C 0,X `4 + true]

f, X `join(4, @, @0)+A

R-OrderBy
f, X `@+A A 0 is a permutation of A A 0 is ordered according to the values of 41,...,4=

f, X `order-by( [41>1,...,4=>=], @)+A

R-Select

C contains no aggregates f, X `@+A@
A = [C 00 | C 0 A@ f[C 0,X `C +C 00]

f, X `select(C, @)+A
R-SelectAgg

C contains aggregates
f, X `group-by(C, [ ], @)+A
f, X `select(C, @)+A

R-Dedup
f, X `@+A@ 8C 2A . C 2A@ 8C 2A@ . 98 .1 8  |A |^A [8]=C^89 . 9 =8_C <A [ 9]

f, X `dedup(@)+A

R-GroupBy1
f, X `@+A |A |=0

f, X `group-by(C, [ ], @)+ [ ]

R-GroupBy2
f, X `@+A |A |>0

f, X `group-by({G1 7!41,...,G< 7!4<}, [ ], @)+ [{G1 7!066(41,A ),...,G< 7!066(4<,A )}]

R-GroupBy3

@: =dedup(select({~1,...,~=}, @)) @E =group-by(⇢, [ ], filter(
”=

8=1~8 =: .~8 , @))
f, X `depjoin(@: as :, @E)+A

f, X `group-by(⇢, [~1,...,~=], @)+A

066(4,A )=

8>>>>>>>>>><
>>>>>>>>>>:

|A | 4 =count
minf[C ,X`40+F,C 2AF 4 =min(4 0)
maxf[C,X`40+F,C 2AF 4 =max(4 0)Õ
f[C,X`40+F,C 2AF 4 =sum(4 0)

066(sum(4 0),A )/066(count,A ) 4 =avg(4 0)
F s.t. f[C,X `4 +F and C 2A o.w.
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